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Non-Linear Behavior of Protein and Tannin in Wine Produced by
Cofermentation of an Interspecific Hybrid (Vitis spp.) and Vinifera
Cultivar

Abstract
Wines produced from red interspecific hybrid grape cultivars (Vitis spp.) typically have lower tannin than
wines produced from vinifera cultivars, which can be attributed to the lower concentration of tannins and
higher concentration of tannin binding proteins of interspecific cultivars. Tannin in wines produced from
hybrid cultivars could potentially be increased by blending hybrids with vinifera. We hypothesized that
blending of grapes prior to fermentation (cofermentation) should result in final wine tannin concentrations
lower than wine tannin concentrations predicted from the individual components due to protein-tannin
binding, but that this effect should be absent from monovarietal wines blended post-fermentation. To evaluate
this hypothesis, over a two-year study, a high tannin V. vinifera cultivar (Cabernet Sauvignon) was blended
with an interspecific hybrid (Marquette) at different ratios either before (cofermentation) or after
fermentation. The tannin and protein concentrations of the wines were measured by methyl cellulose
precipitation assay and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively.
Tannin and protein concentrations in blended wines were compared to values predicted from the linear
combination of the two monovarietal wines. Co-fermented blends with a high proportion of Marquette had
up to 25% lower tannin than predicted, but for most cofermentations and post-fermentation blends observed
and predicted tannin concentrations did not differ. However, protein concentrations for many of the blends –
especially from cofermentation - were lower than the predicted values, in some cases >50%. Loss of protein
due to adsorption to tannin was well modeled by a Freundlich absorption isotherm.
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Abstract: Wines produced from red interspecific hybrid grape cultivars (Vitis spp.) typically have lower 

tannin than wines produced from vinifera cultivars, which can be attributed to the lower concentration of 

tannins and higher concentration of tannin binding proteins of interspecific cultivars. Tannin in wines 

produced from hybrid cultivars could potentially be increased by blending hybrids with vinifera. We 

hypothesized that blending of grapes prior to fermentation (cofermentation) should result in final wine 

tannin concentrations lower than wine tannin concentrations predicted from the individual components 

due to protein-tannin binding, but that this effect should be absent from monovarietal wines blended 

post-fermentation. To evaluate this hypothesis, over a two-year study, a high tannin V. vinifera cultivar 

(Cabernet Sauvignon) was blended with an interspecific hybrid (Marquette) at different ratios either 
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before (cofermentation) or after fermentation.  The tannin and protein concentrations of the wines were 

measured by methyl cellulose precipitation assay and sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), respectively. Tannin and protein concentrations in blended wines were 

compared to values predicted from the linear combination of the two monovarietal wines. Co-fermented 

blends with a high proportion of Marquette had up to 25% lower tannin than predicted, but for most 

cofermentations and post-fermentation blends observed and predicted tannin concentrations did not 

differ. However, protein concentrations for many of the blends – especially from cofermentation - were 

lower than the predicted values, in some cases >50%. Loss of protein due to adsorption to tannin was 

well modeled by a Freundlich absorption isotherm.  

Key words: blended wine, interspecific hybrid, protein, tannin, wine composition  

Introduction  

Interspecific hybrid grapes (Vitis spp.) are widely grown in the Northern USA and Canada due to 

their cold-hardiness and disease resistance. However, red wines produced from hybrid grape cultivars 

typically have low tannin concentration and poor mouthfeel as compared to wines produced from 

European wine grapes (V. vinifera) (Springer & Sacks 2014). Recent reports indicate that the lower 

tannin concentration of hybrid wines is likely due to the combined effect of lower skin tannins and 

higher concentrations of extractable proteins in hybrid grape cultivars (Springer and Sacks 2014, Van 

Sluyter et al. 2015). These tannin-binding proteins appear to be “pathogenesis-related proteins” of the 

same types responsible for white wine haze (Van Sluyter et al. 2015). Furthermore, the higher residual 

protein of hybrid wines results in lower retention of added exogenous tannin as compared to V. vinifera 

wines (Springer et al. 2016b). Strategies to mitigate the tannin-protein interactions in red wine, such as 

bentonite treatment before (Springer et al. 2016a) or during fermentation (Nicolle et al. 2019), have 

minor or insignificant effects on final wine tannin. The reasons for these minimal effects are unclear but 

may be because protein extraction and tannin binding continue throughout maceration (Bindon et al. 
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2016, Springer et al. 2016a). The poor retention of tannin can be compensated for through use of high 

rates of exogenous tannin addition, but this approach leads to undesirable sensory characteristics (brown 

color, off-aromas, bitterness) in the finished wine due to impurities in commercial products (Harbertson 

et al. 2012).  

The blending of lower tannin hybrid grapes or wines with higher tannin vinifera cultivars (e.g. 

Cabernet Sauvignon) could potentially increase the tannin content of hybrid-based wines. Some 

investigations on post-fermentation blends of vinifera have reported final wine tannin concentrations 

intermediate to the monovarietal components, although this did not translate to differences in perceived 

astringency (Caceres-Mella et al. 2014, Dooley et al. 2012). A thorough investigation by Hopfer et al. on 

blends of monovarietal wines produced from Bordeaux cultivars reported that final concentrations of 

iron reactive phenols (IRP) were generally intermediate to blend components, but in some cases resulted 

in IRP concentrations higher than the component wines (Hopfer et al. 2012). However, it is not clear that 

these results can be extrapolated to blends of high protein, low tannin grapes (e.g. most hybrids) and 

high tannin, low protein grapes (many vinifera). As discussed above, addition of tannin to hybrid wines 

– analogous to post-fermentation blending – results in low tannin retention. However, pre-fermentation 

tannin additions to hybrid musts – analogous to co-fermenting two or more grape varieties – have also 

shown low recoveries of exogenous tannin, typically < 10% (Manns et al. 2013, Nicolle et al. 2019).   

We hypothesized that final wine tannin concentrations should be lower in wines produced by 

cofermenting (CF) low tannin, high protein hybrids and high tannin, low protein vinifera grapes than by 

producing the wine by post-fermentation (PF) blending of the monovarietal wines. We expected that 

during CF, vinifera-derived tannins would bind to hybrid-derived proteins, decreasing their 

extractability. These proteins and other potential tannin-binding compounds (e.g. polysaccharides) could 

potentially be removed by post-fermentation racking, such that PF blending would yield higher final 

wine tannin. In this work, we investigated the effects of blending type (CF vs. PF) on both the protein 
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and tannin concentrations. The binding of protein between tannin and protein was also examined using 

the Freundlich model, as described in previous work (Springer et al. 2016b).  

Materials and Methods  

Chemical Reagents. Ammonium sulfate (granular, certified ACS) and SYPRO Ruby protein gel 

stain were obtained from Fisher Scientific (Waltham, MA). Epicatechin (≥90%, HPLC), methylcellulose 

(viscosity: 1500 cP), β-mercaptoethanol (99%) were obtained from Sigma-Aldrich (St. Louis, MO). 

Potassium metabisulfite was purchased from Presque Isle Wine Cellars (North East PA).  Concentrated 

sodium dodecyl sulfate solution, concentrated 4× Laemmli sample buffer were obtained from Bio-Rad 

Laboratories Inc. (Hercules, CA).  Enzyme kits for determining L-malic acid (K-LMAL) and 

glucose/fructose (K-FRUGL) measurements were purchased from Megazyme (Wicklow, Ireland).  

Raw Fruit Material. Marquette (Mq) grapes were sourced from the Iowa State 

UniversityHorticulture Research Farm (Ames, IA, USA) and harvested manually (1 Sept 2016 and 9 

Sept 2017) at physiological ripeness.  Whole clusters were divided into 2.27 kg bags and stored at -20 °C 

for three months.  Cabernet Sauvignon (CS) from a Sonoma, CA vineyard was purchased as frozen must 

(previously destemmed and crushed) from Brehm Vineyards (Underwood, WA, USA) for both 2016 and 

2017 growing seasons.   

Winemaking. Mq grapes and CS must were thawed at 10 °C for 3 days before the Mq grapes 

were crushed and destemmed using a Corvina crusher-destemmer (Enotecnica Pillan, Rampazzo, Italy).  

The resulting Mq must (skins, pulp and juice) and thawed CS must (skins, pulp and juice) were weighed 

into 7.6 L plastic pails (6.8 kg total/pail) in varying ratios (Table 1).  Fermentations were performed in 

triplicate except in the case of year 2, Trials 6 and 7, where the fermentations were performed in 

duplicate due to insufficient fruit.    
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Prior to blending, initial juice chemistry (soluble solids, pH, TA) was measured for the Mq and 

CS juices (supplemental information).  Soluble solids were measured using a PAL-1 pocket 

refractometer (Atago, Bellevue, WA), pH was measured using an Orion 2-Star benchtop pH meter 

(ThermoFisher Scientific, Waltham, MA) and titratable acidity was measured using a Titrino plus 

automatic titrator (Metrohm, Riverview, FL).  For Year 1 trials, sucrose was added proportionately to 

trials 1 through 4 to increase the sugar concentration to be equal to the Cabernet Sauvignon must. No 

must adjustments were made for Year 2.  All fermentations were conducted at room temperature  

(approximately 20 °C).  

In Year 1, Lalvin ICV D254 yeast were rehydrated with GoFerm (Scott Labs, Petaluma, CA) as 

per the manufacturer’s instructions. Musts were inoculated at a rate of 0.2 g/L. After 24 h musts, were 

inoculated with lactic acid bacteria (Lalvin VP41; Scott Labs). Fermentations were all performed at 20 

°C. Manual punch downs were performed daily. Specific gravity and temperature were monitored using 

a DMA (Anton Paar, Austria). After specific gravity was unchanged over two consecutive days, the 

musts were pressed on a bench-top stainless-steel fruit press (Brewcraft, Vancouver, WA, USA) into 

3.78 L glass bottles fitted with an airlock and stored at 17 °C to complete fermentations. Residual sugar 

and malic acid were checked daily by enzymatic assay (Megazyme, Ireland) until alcoholic and 

malolactic fermentation were complete (residual sugar < 1.0 g/L, malic acid < 0.3 g/L). Wines were then 

racked into a clean 3.78 L glass bottle with a screwcap and supplemented with potassium metabisulfite 

(50 mg/L as SO2). At this stage, the three fermentation replicates were combined into two lots before 

analysis or post-ferment blending in order to minimize headspace in the 3.78 L storage bottles. After 

three months of dark storage at 10 °C, the wines were racked again. After 12 days, wines were bottled 

into 750 mL clear glass screw cap bottles using an Enolmatic Vacuum Filler (Tenco, Italy).  Bottled 

wine was stored in the dark at 4 °C until analysis. Tannin analysis was performed approximately 1 year 

after bottling, and protein analysis was performed approximately 1.5 years after bottling.  Timing 



www.manaraa.com

 

  

differences of the two analyses (tannin and protein) were due to lags in method development and 

validation. However, we observed that tannin and protein concentrations results changed negligibly in 

the periods between the two analyses.  

Year 2 fermentations were conducted similarly to Year 1 fermentations, with the following 

changes: all fermentations (except 100Mq rep 1, 100Mq rep 2 and 50Mq50CS rep 3) were pressed after 

9 days of skin contact when the fermentations were at apparent dryness (sp gr < 1). The other three 

fermentations were pressed after 14 days of skin contact, at which point they had reached apparent 

dryness. Immediately after pressing, the wines were evaluated for residual sugar and malic acid, and all 

were determined to be finished fermenting.  The wines were racked into 3.78 L glass bottles with a 

screwcap after 24 h settling at 10 °C and supplemented with potassium metabisulfite (30 mg/L SO2) to 

give a final dose of 30 mg/L sulfur dioxide.  The lower dose of SO2 in year 2 as compared to year 1 was 

the result of a clerical error but was not expected to affect the outcome of this study. After two months, 

the wines were bottled approximately 750 mL clear glass screw cap bottles. Bottled wine was stored 

dark at 4 °C until analysis. Tannin analysis was performed after approximately 3 months and protein 

analysis was performed after approximately 4.5 months.  

Tannin Quantitation. Initial attempts to quantitate tannins using the Adams-Harbertson protein 

precipitation assay were unsuccessful because tannin concentrations in many wine samples were below 

the assay detection limit (Harbertson and Adams 2000). Wine tannins were instead measured using the 

methyl cellulose precipitation (MCP) assay (Mercurio and Smith 2008). The assay was modified 

slightly, in that the final volume of the control and sample tubes was 5 mL instead of 10 mL, i.e. all 

reagent and sample volumes were decreased by one half.  A calibration curve was created using a series 

of epicatechin standard solutions in water ranging from 0 to 200 mg/L.  Spectrophotometric analysis was 

performed on a Genesys 10S UV-vis spectrophotometer (ThermoFisher Scientific, Waltham, MA). 

Predicted tannin for wine blends was calculated from the proportional contribution of the 100% Mq and  
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100% CS tannin concentrations:  

 Equation 1   Predicted Tannin = a * %Mq + b * %CS  

Where a is the concentration of tannin in 100% Mq wine and b is the concentration of tannin in 100% 

CS wine.  Calculated values are available in Supplemental Tables 1 and 2.  

Protein Quantification by SDS PAGE. Sample preparation and SDS-PAGE experiments were 

performed according to a previous report (Springer et al. 2016b). After dialysis, samples were 

concentrated using a Savant SpeedVac Plus (ThermoFisher Scientific, Waltham, MA) and stored at -80 

°C until further experiments.  For analysis, samples were thawed at room temperature and reconstituted 

in 500 μL ultrapure water.  A 30 μL aliquot of sample was added to 60 μL loading buffer (BioRAD 4x 

Laemmli Sample buffer with 10% β-mercaptoethanol added), vortexed and heated to 95 °C for 5 

minutes.  After cooling to room temperature, the samples were centrifuged at 10000 g for 1 minute using 

an accuSpin Micro centrifuge (Fisher Scientific, Hampton, NH) before loading a 20 μL subsample onto 

a Mini-PROTEAN TGX Precast 12% glycine gel.  Mark12 Unstained Standard (Life Technologies, 

Thermofisher Scientific, Waltham, MA) was included in each run. Gel electrophoresis was performed 

using a Bio-Rad Mini-PROTEAN Tetra cell at constant conditions (400 A, 70 mV) for approximately 

115 minutes. Gels were stained overnight in SYPRO Ruby protein gel stain, and fixed in a 10% 

methanol, 7% acetic acid solution for 45 to 60 minutes before washing and storing in water.  

For protein quantitation, gels were imaged with a Typhoon FLA 9500 scanner (GE Healthcare, Chicago, 

IL) and processed using ImageQuant software (GE Healthcare, Chicago, IL).  Two bands from the 

standard ladder (Bovine Serum Albumin 66.3 kDa and Trypsin Inhibitor, 21.5 kDa) were chosen for all 

other bands to be normalized against, based on the manufacturer’s stated concentrations for these 

proteins. Five distinct and consistent bands were integrated for each sample and summed to give an 

approximate total protein concentration. Predicted protein for wine blends was calculated from the 

proportional contribution of the 100% Mq and 100% CS wines, analogous to tannin quantitation.  
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Calculated values are available in Supplemental Tables 3 and 4.  

Modelling Protein Adsorption to Tannin. The adsorption of proteins to condensed tannins was 

modeled using the linear form of the Freundlich adsorption isotherm:  

 Equation 2  log (qs) = log KF + bF log [Cs]  

where qs is the mass ratio (mg/mg) of protein adsorbed to the amount of condensed tannin in a volume of 

wine, Cs is the equilibrium concentration of protein remaining in the wine (mg/L), KF (L/mg) is an 

empirical constant that represents the adsorption capacity of the adsorbing agent (tannin), and bF is 

dimensionless and represents the adsorption intensity.  The protein adsorbed component of qs was 

calculated from the following equation:  

Equation 3 𝑞𝑞𝑞𝑞𝑠𝑠𝑠𝑠 = 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]  

A plot of log (qs) vs log [Cs] was generated used Graphpad Prism, and KF and bF were determined from 

the intercept and slope, respectively.  

Statistical Analysis. Tannin and protein concentrations for the CF and PF wines were compared 

using separate t-tests for each set of proportional wines using GraphPad Prism version 7.00 for Windows 

(La Jolla, CA).  For these t-tests, the Bonferonni-Dunn correction was applied with an initial p-value of  

0.05 to account for non-equivalent standard deviations.  The tannin and protein concentrations for the CF 

and PF wines were then compared to the predicted values using one-way t-tests by setting the predicted 

concentrations as the known value. The one-way t-tests were performed using the GraphPad QuickCalcs 

web site (https://www.graphpad.com/quickcalcs/).  

Results and Discussion  

Two cultivars (Cabernet Sauvignon and Marquette) were used in different blending proportions 

for cofermentation (CF) and post-fermentation (PF) experiments, summarized in Figure 1. Cabernet  



www.manaraa.com

 

  

Sauvignon (CS) was chosen as a representative high tannin vinifera cultivar (Harbertson et al. 2008).  

Marquette (Mq) was chosen as the low tannin interspecific hybrid variety because of its interest to upper 

Midwest and Northeastern states and Canada due to its extreme cold hardiness and positive aroma and 

flavor characteristics (Manns et al. 2013). Basic juice and wine chemistry for the monovarietal, 

unblended wines are shown in Table 2. The Mq juice in year 1 had moderate sugar concentrations and 

acid levels. The final ethanol concentration in the year 1 Mq wine of 13.9% v/v is consistent with many 

commercial red wines. In contrast, the CS juice had a very high sugar concentration, which resulted in 

high final ethanol (17.4% v/v) and was the likely cause of slower fermentation kinetics (data not shown).  

Beaver et al. recently reported that increasing ethanol concentration from 0 to 15% resulted in a 10-fold 

increase in the proanthocyanidin (tannin) extraction equilibrium constants for proanthocyanidin-CWM 

model systems (Beaver et al., 2019). The effect on ethanol on the equilibria of proanthocyandins 

between CWM and wine for the more limited range of ethanol concentrations in our current experiment 

is unknown, but is expected to be smaller. For year 2, both the Mq and the CS juice were similar in 

terms of sugar concentrations, which led to ethanol concentrations of 14.5% v/v and 13.4% v/v 

respectively.  The year 2 fermentations did not show any differences in fermentation kinetics (data not 

shown) and were all pressed off after the same number of days with skin contact.   

Condensed tannins were measured in monovarietal wines and their blends. As expected, tannin 

concentrations in 100% CS wines were ~5-fold higher than 100% Mq wines (~2000 vs. ~400 mg/L as 

epicatechin equivalents). The 100% CS values (1921 mg/L and 2270 mg/L for year 1 and 2 respectively) 

were comparable to previous reports (Mercurio and Smith 2008). There are no previous reports of 

measuring condensed tannin in hybrids using the MCP assay, but a previous study reported a tannin 

concentration in Mq wine of 48 mg/L based on phloroglucinolysis HPLC (Manns et al. 2013), which is 

well below typical concentrations reported in vinifera wines by phloroglucinolysis - HPLC, 119 to 376 

mg/L (Kennedy et al. 2006). Predicted tannin and protein concentrations were also determined for the 
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blends based on the assumption that final concentrations would be the weighted average of the 

components. For both CF and PF wines, tannin concentration increased with increasing CS content in 

the wine for both growing years (Figure 2A and 2B). For year 1, CF tannin concentrations in all 

treatments did not differ significantly from predicted values. For year 2, only CF wines produced with 

the highest proportion of Mq had significantly lower tannin than predicted, specifically the 90%  

Mq/10% CS (-24.9% as compared to predicted). PF tannin concentrations did not differ significantly 

from values predicted from the monovarietal components.  

The lower-than-predicted tannin for the 90% Mq/10% CS cofermentation blending (but not 

postfermentation blending) may be due to adsorption of the CS tannin onto Mq proteins. Recent work 

has demonstrated that tannin extractability and retention vary considerably among grape sources 

(Bindon et al. 2014, Fragoso et al. 2011), even under identical fermentation conditions, and can be 

particularly low in Vitis spp. hybrids (Springer et al. 2016a). The low extractability/retention in hybrids 

was credited to their higher concentrations of tannin-binding soluble proteins, which are detectable in the 

juice prior to fermentation and may be further extracted during fermentation (Springer et al. 2016a). As 

discussed in more detail below, the high concentration of protein in the unblended Mq wine (Table 2) 

supports this hypothesis. In the case of PF wines, the agreement between predicted and observed tannin 

may be because tannin-protein binding is cooperative and does not follow fixed ratios (Waterhouse et al. 

2016). Therefore, a large portion of the Mq protein could have been lost in the PF treatment following its 

vinification, pressing, and racking, and prior to its contact with tannin in the CS wine. However, under 

cofermentation conditions, this Mq protein would be able to bind CS-derived tannins. Our PF blending 

results contrast with reports that blending leads to concentrations of iron-reactive phenols (IRP) which 

were occasionally greater than the IRP predicted from individual blend components (Hopfer et al. 2012). 

This earlier work used only vinifera cultivars (Cabernet Sauvignon, Merlot and Cabernet franc) all 

which have relatively high tannin concentrations in comparison to Marquette for their subsequent wines  
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(Harbertson et al. 2008, Mercurio and Smith, 2008, Caceres-Mella et al. 2014). Another report evaluated  

PF blends of wines produced from Cabernet Sauvignon, Carménère, Merlot and Cabernet Franc  

(Caceres-Mella et al. 2014).  The authors of these papers did not perform calculations to determine if 

flavanol or tannin concentrations in blended wines were similar to values predicted from the unblended 

components; however, inspection of the raw data from these papers suggests this was the case.  

Protein concentrations were determined in wines by SDS-PAGE and staining, and a 

representative gel is shown in Figure 3. Protein bands were observed at 14, 23 to 29, and 65 kDa (Figure 

3), and are likely the same pathogenesis-related proteins identified in previous studies on red hybrid 

wines and white wine haze: chitinase, thaumatin like protein (TLP) and invertase (Van Sluyter et al. 

2015, Springer et al. 2016b). The 100% Mq wine had ~3-fold higher protein than the 100% CS wine in 

both years, and thus was the major contributor of protein to the blended wines. For most blends and 

years, protein concentrations were lower in both CF and PF blends as compared to the amount predicted 

based on weighted averages of the component wines (Figure 2). For example, the year 1 50Mq50CS 

wines (both PF and CF) had 50 to 60% the protein of predicted values (4.3 mg/L and 4.7 mg/L vs. 8.2 

mg/L respectively, p=0.05). Thus, blending of Mq with CS results in a loss of protein as compared to the 

monovarietal components, presumably due to greater binding of hybrid-derived proteins by 

viniferaderived tannins.   

Vintage variation was not explicitly investigated during this work but some differences in the 

significance of treatments were observed across years. For example, tannin in the year 2 CF wine  

90Mq10CS was significantly lower than the predicted concentration, whereas in year 1 it was not. 

Similarly, protein in the year 2 PF wine 50Mq50CS was significantly different from the predicted 

concentration, whereas in year 1 no significant differences were observed. The reasons for these 

inconsistencies are unclear. However, it is known that other must components, e.g. cell wall material 

(CWM) can bind tannin (Beaver, et al. 2019). These components were not measured in the current 
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study, but if they varied due to vintage factors (temperature, precipitation, etc.) they could affect final 

concentrations of tannins and proteins.  

For the selected cultivars, we observed clear negative deviations from linear behavior for protein 

in blended wines, but only minor or non-significant effects on tannin in blended wines. We also 

observed that the tannin concentration is approximately 40-fold greater than the protein concentration in 

the 100Mq wines and 400-fold greater in the 100CS wines (Table 1). Based on the fact that protein 

appeared to be limiting, a Freundlich adsorption isotherm was used to model the adsorption of tannin 

onto proteins (Pedneault et al. 2013, Springer et al. 2016b) As seen in Figure 4, the linearized Freundlich 

equation is good model of final concentrations of protein as a function of tannin concentration (r2 > 0.98 

in both years). These observations suggest that for the combination of grapes selected (Mq and CS), 

tannin is excess of protein, and that final tannin and protein concentrations are well described by a 

cooperative binding model. Potentially, selection of vinifera and hybrid pairs with lower tannin and 

higher protein (e.g. Lemberger and Maréchal Foch in a previous report) (Springer et al. 2016a) would 

have yielded the opposite result, i.e. greater negative deviation from non-linear behavior for tannin in 

blends, although this was not evaluated in our current work.  

Although they were not part of this experimental design, several viticultural or winemaking  

decisions could additionally affect the extent of protein and/or tannin extractability, both in 

covinifications or ordinary vinifications.  For example, sunlight exposure can lead to higher overall 

phenolic concentration in grapes (Scharfetter et al., 2019), and full deficit irrigation as compared to 

standard industry irrigation practices has been demonstrated to significant increase tannins in Cabernet 

Sauvignon wines (Cassassa et al., 2015).  Some protein can be removed before fermentation by 

bentonite fining of juice (Springer et al., 2016a) or tannin extraction, and specifically seed tannin 

extraction, can be amplified through lengthened maceration times (Cerpa-Calderón, 2008). Factors that 
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increase the amount or rate of tannin extraction or decrease protein content should result in higher final 

tannin and lower wine protein.    

Conclusion  

We observed that cofermentation of a high-tannin cultivar (CS) with a low-tannin cultivar (Mq) 

results in lower final tannin concentration than values predicted from a proportional contribution of the 

monovarietal components. This effect is proposed to be due to decreased tannin extractability during 

maceration as a result of protein-tannin interactions. This hypothesis supported by the presence of lower 

than predicted protein concentrations in blended wines. Significant differences were not observed 

between predicted and experimental tannin concentrations for post-fermentation blends, suggesting that 

post-fermentation blending may be preferable for ensuring a higher tannin concentration when 

producing blended wines from high and low tannin cultivars.   
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Table 1  Proportional composition of the experimental wines.   
Trial #   Year 1    Year 2  

  % Mq   % CS  % Mq  % CS  

1  100   0  100  0  

2  90   10  90  10  

3  75   25  75  25  

4  50   50  60  40  

5  0   100  50  50  

6       40  60  

7       0  100  
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Table 2  Chemical analysis of the monovarietal Mq and CS juices and wines.  

    

Soluble  
Solids 
(Brix)  pH  

Titratable  
Acidity  

(g/L)  
Ethanol  
(% v/v)  

Residual  
Sugar  
(g/L)  

Volatile  
Acidity*  

(g/L)  

Days 
on  

Skins  

Tannin  
(mg/L 

epicatechin 
equiv.)  Protein  

(mg/L)  

Year 1  

Marquette  juice  24.3  3.28  6.9  -  -  -  -  -  -  

  wine    3.40  5.9  13.9  0.4  0.32  7  474 ± 128  12 ± 1.4  

Cabernet  
Sauvignon   

juice  29.6  3.91  6.1              

  wine    3.87  6.3  17.4  7.3  0.82  13  1922 ± 178  4 ± 0.23  

     Year 2       

Marquette  juice  25.1  3.24  7.8  -  -  -  -  -  -  

  wine    3.33  7.7  14.5  0.0  0.46  9  358 ± 42  19.8 ± 3.7  

Cabernet  
Sauvignon  

juice  24.5  3.63  4.3  -  -  -  -  -  -  

  wine    3.48  6.8  13.4  0.0  0.47  9  2270 ± 91  5.1 ± 0.9  
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Figure 1  Experimental summary for the cofermentation (CF) and postfermentation (PF) blending 
experiments. Mq = Marquette, CS = Cabernet Sauvignon.  
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Figure 2  Tannin and protein concentrations in finished wines produced by blending Marquette (Mq) and 
Cabernet Sauvignon (CS) in different proportions. Blending was either performed following crushing and 
cofermented (CF) or performed on wines postfermentation (PF). (A) Year 1 tannin concentrations. (B) Year 
2 tannin concentrations. (C) Year 1 protein concentrations. (D) Year 2 protein concentrations. Statistically 
significant differences are identified with a (*) as determined by t-tests (p = 0.05).  
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Figure 3  Exemplary SDS-PAGE gels (both Year 2) of proteins isolated from wines made by blending  
Marquette (Mq) and Cabernet Sauvignon (CS) in various proportions (denoted at the top of each lane). (A) 
Cofermentation, (B) Postfermentation blending.  For quantification the bands at 66.3 kDa and 21.5 kDa of 
the reference standard ladder in the first lane were normalized based on the manufacturer’s reported 
concentrations.  

  

  

  
Figure 4  Linearized Freundlich adsorption isotherm at ambient conditions (ca. 20 °C) illustrating the 
adsorption of tannins onto proteins.  These curves were generated with tannin and protein concentrations 
observed in wines made from post-fermentation blending of Marquette and Cabernet Sauvignon in different 
proportions. (A) Year 1 (B) Year 2. The log transformation of the mass ratio of protein adsorbed to the 
amount of tannin in wine (qs) is plotted on the y-axis vs. the log transformation of equilibrium wine protein 
(Cs) on the x-axis.   
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Supplemental Table 1  Tannin concentrations for year 1.  Coferment (CF) measurements are shown for both 
fermentation replicates.  Measurements expressed as mg/L epicatechin equivalents.  PF = postfermentation 
blending, stdev = standard deviation.  

Sample Ratio  CF-Y1 F1  CF-Y1 F2  PF-Y1  Predicted  

Marquette 
(% Mq)  

Cabernet  
Sauvignon  

(% CS)  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  

100  0  383  33  564  4  474  128  474  

90  10  546  156  495  9  501  85  619  

75  25  701  20  610  7  788  27  836  

50  50  1027  49  1084  18  1142  20  1198  

0  100  1796  27  2048  94  1922  178  1922  

   

  
Supplemental Table 2  Tannin concentrations for year 2.  Coferment (CF) measurements are shown for all 
fermentation replicates.  Measurements expressed as mg/L epicatechin equivalents.  PF = postfermentation 
blending, stdev = standard deviation. *For CF-Y2 F3, only 2 replicates were performed due to insufficient 
grape material.  

Sample Ratio  CF-Y2 F1  CF-Y2 F2  CF-Y2 F3  PF-Y2  Predicted  

Marquette 
(% Mq)  

Cabernet  
Sauvignon  

(% CS)  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  

100  0  336  2  406  34  331  38  358  42  358  

90  10  458  60  404  46  374  89  607  22  549  

75  25  777  22  780  65  719  55  874  58  836  

60  40  1148  34  1065  26  1248  17  1104  29  1123  

50  50  1279  22  1116  22  1563  2  1294  10  1314  

40  60  1568  34  1572  5  *  *  1529  41  1505  
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0  100  2334  81  2206  34  *  *  2270  91  2270  

   

  
Supplemental Table 3  Protein concentrations for year 1.  Coferment (CF) measurements are shown for both 
fermentation replicates.  PF = postfermentation blending, stdev = standard deviation.  

Sample Ratio  CF-Y1 F1  CF-Y1 F2  PF-Y1 R1  PF-Y1 R2  Predicted  

Marquette 
(% Mq)  

Cabernet  
Sauvignon  

(% CS)  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  

100  0  13.7  1.4  10.3  0.8  12.1  1.3  12.6  1.0  12.2  

90  10  7.8  1.6  8.4  0.5  7.2  0.8  6.2  0.7  11.4  

75  25  7.4  0.7  6.3  0.8  5.3  0.9  4.6  0.7  10.2  

50  50  4.8  0.7  4.6  0.6  4.5  0.8  4.0  0.6  8.2  

0  100  4.2  1.3  4.3  0.6  4.5  0.9  4.1  0.6  4.3  

   

  
Supplemental Table 4  Protein concentrations for year 2.  Coferment (CF) measurements are shown for all 
fermentation replicates.  PF = postfermentation blending, stdev = standard deviation. *For CF-Y2 F3, only 2 
replicates were performed due to insufficient grape material.  

Sample Ratio  CF-Y2 F1  CF-Y2 F2  CF-Y2 F3  PF-Y2 R1  PF-Y2 R2  Predicted  

Marquette 
(% Mq)  

Cabernet  
Sauvignon  

(% CS)  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  stdev  mg/L  

100  0  20.4  1.4  14.1  1.3  22.4  1.9  23.4  9.3  18.5  2.0  19.8  

90  10  13.2  0.7  10.1  1.1  20.1  2.3  15.3  2.1  16.5  2.6  18.3  

75  25  7.9  0.9  6.2  0.8  8.7  1.7  11.9  1.5  10.6  1.0  16.1  

60  40  6.5  1.1  4.6  0.5  6.9  0.9  11.3  0.6  7.7  0.2  13.9  

50  50  5.0  0.4  4.4  0.6  6.5  0.6  10.1  2.0  7.4  0.9  12.4  
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40  60  6.6  1.1  4.5  0.5      8.0  1.1  8.0  0.8  11.0  

0  100  5.0  0.4  3.9  0.5      5.9  1.0  5.6  0.2  5.1  
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